Innovate Oil-free Technology
Lead the Revolution of Oil-free Air Compressor

OIL-free Screw Air Gompressor Water-IubricatedTech

GOUILETIS

[Founder of Water-Lubricated Air Compressor

Enterpise Chapter	Project Chapter
- Compand history Introduction - Why choose Oil free compressor? water-lubricated compressor?	

03

Vision Chapter

Partners

Manufacture the Best Air

Compressor All Over the World

ENTERPRISE INTRODUCTION

Since 1960, CMN has been leading the field of single screw compressors and always prioritizes product stability and performance. In 2005, CMN successfully developed the world's first water lubricated oil-free screw air compressor using a stainless steel air end, providing the industry with a truly pure oil-free compressed air solution. In 2010, CMN led the trend by launching the world's first water lubricated oil-free screw air compressor with permanent magnet rariable frequency motor Compared to traditional fived frequency yariable frequency motor. Compared to traditional fixed frequency compressors, our ing savings. This no reduces operating costs. In 2016, CMN once again led the way by launching the world's first pure oil-free screw medium pressure air compressor capable of supplying up to 40 bar compressed air. This breakthrough innovation provides a truly oil-free solution for the bottle blowing industry, ensuring the purity of the product.

With our continuously optimized products, CMN has established mature marketing systems in over 50 countries such as South Korea, the United States, and Thailand, earning a global reputation. Our achievements stem from our pursuit of product stability and are more rooted in our philosophy of deeply understanding customer needs. We always prioritize customer needs, focus on customers, and continuously innovate and optimize our products. Whenever and wherever you have a need for compressed air, our professional team will tailor the most suitable and perfect solution for you.

01 Science 02 Innovate 04 Concent Develop

Why choose Oil free compressor

100\% oil-free compressed air

We firmly believe that in the future,

more factories will use oil-free compressed air.
The entire models of CMN water lubricated series have owned Germany TUV oil-free certification, with Oil content Class 0 accoding to ISO 8573-1 (2010)

ISO 8573-1 (2010) :

Grade	A: Solid particles - maximum number of solid particles per cubic meter			B: Dew point ${ }^{\circ} \mathrm{C}$	$\begin{gathered} C: \\ \text { oil(mg/m}) \end{gathered}$
	$0.1-0.5 \mu \mathrm{~m}$	0.5-1.0رm	1.0-5.0رm		
0	Defined by the customer or manufacturer, more stringent than Class1				
1	100	1	0	-70	0.01
2	100000	1000	10	-40	0.10
3	-	10000	500	-20	1.00
4	-	-	1000	3	5
5	-	-	20000	7	-

1 Nool iololution:

Oil-free air compressors do not require the use of lubricating oil, which eliminates the risk of oil pollution. This is particularly important for certain applications, such as food processing, pharmaceutical production, chip manufacturing

2 Reduce maintenance costs

Oil-free air compressors require less maintenance than oil-lubricated compressors Since oil-free compressors do not have lubricating oil, there is no need for replacement of related parts such as oil filter, oil gas separation element, and compressor oil, reducing maintenance costs and labor cost.

4 Avoid oil-gas mixing problems:

In some industrial applications, dry and clean compressed air is required. Since oil-free air compressors do not use lubricating oil, they can avoid the problem of oil and gas mixing and ensure the supply of dry, clean compressed air.

4 mpoveveroouctatanaly:

In some applications, such as painting, bottle blowing, etc., which require high-quality compressed air, oil contamination will have a negative impact on the product quality. Choosing an oil-free air compressor can ensure the purity of the air and oprove he productqualy.

5 Reduce post-processing burrden

The use of oil-free air compressors reduces the burden of post-processing equipment. More importantly, an oil-injection air compressor with any oil-removal post treatment equipment can not supply true oil-free compressed air.

ENTERPRISE
 KEY ADVANTAGES

$>$ Single Screw
Compression Technology he compression air end is mposed of one main screw and wo starwheels, with a total of 11 ompression chambers. The air end rotates once to achieve 11 imes of compression with hig fficiency. Also, single-screw ompression structure is widely tress-bearing condition. The screw can withstand higher pressure with a longer life.

Why choose CMN water-lubricated compressor
\square

1, Innovative oil-free technology, lifetime oil-free compressed air

MN uses a stainless steel air end and water as the lubricating medium to achieve hydrodynamic lubrication under a designed clearance. Since the rotating speed of air end is only around 3,000 rpm lubricating oil is not required to be added to the bearings, and there is no risk of oil contamination.
The machine is designed to have a service life of over 25 years, and the $C M$ series can guarantee a The machine is designed to have a service life of over 25 years, and the CM series can guarantee a
lifetime of clean, oil-free compressed air. This advantage comes from the fact that the machine uses pure water as the lubricating medium.

2, Ultra-low exhaust temperature, ultra-low air end operating temperature

Jue to the way that CMlubricating water is directly injected into the air end for lubrication and
cooling, the temperature of the air end does not exceed $45^{\circ} \mathrm{C}$ when the unit is running, and there is no isk of burns or fire;
content, reducing the burden on post-pro

ENTERPRISE
 KeY ADVANTAEES

Features

| | CMN water-lubrication oil-free | Traditional oil-free |
| :---: | :---: | :---: | :---: |
| Oil | The whole machine does not have any
 lubricating oil. | Only the compression chamber
 is oil-free, relies on sealing. |
| Speed | 3000 rpm | $6000-25000 \mathrm{rpm}$ |
| Compression
 chamber
 temperature | $15^{\circ} \mathrm{C}$ higher than ambient | |
| temperature | | |$\quad 200^{\circ} \mathrm{C}$.

tar wheel material description

a single-screw air compressor, the star wheel is an important component which used to form a seal between the screw and the housing to complete the compression process of compressed air. Due to the contact and friction between the star

Through years of accumulated experience, CMN has used aviation-grade materials combined with confidential .
The star wheel blades equipped with every air compressor manufactured by CMN undergo strict screening and testing processes to ensure its ultra-long service life to ensure machine stability.

COMPONENT DISPLAY

Permanent magnet motor
CMN customized high-quality motor, using rare earth permanent magnet materials, protection grade IP54, insulation grade F, built-in SKF bearings, the efficiency
is $3 \%-5 \%$ higher than standard motor, and it can guarantee $7 * 24$ hours of non-stop operation.

5
Stainless steel air end A fully stainless steel made oil--free air end ndependently developed and manuractured by CMN with patent number
LL 201110000872.4 . The airend has ultra high volumetric efficiency, and a patented service life of more than 25 years.
(6)

Lubricating water filtration system
The shell is made of stainless steel and equip with CMN original filter element. With high-precision glass fiber cotton mult
layer design, the filtration accuracy layer design, the filtration accuracy
reaches.

(7)

Water cooler
Using a high-performance plate heat
exch anger with a multi-process cooling exchanger with a multi-process coolin
structure design, the cooling area is Increased several times and the unit
cooling effect is better, ensuring that the air ompressor outlet temperature does not

Logic programming computer control system Adopts advanced control, fault monitoring and early which can display all operating information of the entire unit. Using French Scheneider Electric control system he microcomputer controls the drive motor and adjusts
he pressure within a narrow pressure band to maximize the efficiency and reliability of the equipment.

High-efficiency air
intake valve
The self-patented high-efficiency air intake valve adopts a patented integrated lowest point air intake mode, which can effectively improve compression efficiency, reduce noise during suction, and extend the
service life of the air fiter. The unique openable modular box structure improves maintenance convenience

Water and air separation barrel Made entirely of stainless steel, no internal chips fall off. The special internal streamline design allows the air flow rate to separation of moisture inside. The moisture settles to the bottom of the water and air barrel, and the compressed air is discharged from
the exhaust port through the minimum pressure valve.

LOWENERGY
 CONSUMPTION

Ultra-low energy consumption from CMN core advantages

One-stage compression, ultra-high volumetric efficiency Based on the ultra-high volumetric efficiency of the single-screw air end, coupled with the lubrication, sealing,
and cooling effects of pure water, unlike traditional oil-free technology that relies on two-stage compression, C series only requires one-stage compression to provide a pressure of up to 12.5 bar compressed air. Since no additional compression stage is required, it can compress air to the target operating pressure with greater efficiency, resulting in lower energy consumption.

At the same time, CM adopts a transmission method in which the motor and the air end are directly connected to reduce losses in the energy transmission process, maximize efficiency, and reduce maintenance content which is
a more economical and environmentally friendly choice in terms of saving energy and reducing operating costs.

ISOTHERMAL COMPRESSION

isothermal compression has the following advantages:

- High efficiency:

Isothermal compression means that during the compression process, the air and cooling water exchange heat to keep the temperature constant during the compression process. Compared with non-isothermal compressio isothermal compression can effectively reduce heat loss and improve energy efficiency. Water-lubricated air compressors use cooling water to isothermally treat compressed air, making the compression process more
efficient.

- The compression effect is more stable:
sothermal compression can effectively reduce the compression temperature and reduce the volume change mechanical wear and risk of failure, and extends equipment life.
mechanical wear and risk of failure, and extends equipment life.

Protect process quality:
e isothermal compression of the water-lubricated air compressor can avoid the analysis of moisture and oil acused by overheating of the gas, thereby maintaining the purity of the compressed air. For industries with higher provide more reliable oil-free and pollution-free compressed air.

IOT Monitoring System
The CM series comes standard with an 10 T monitoring system that supports emote monitoring, start stop, and other functions, and can provide timely feedback on various alarm information.

LOWENERGY
 CONSUMPTION

Variable Frequency

More than 80% of a compressor's life cycle cost is accounted for by the energy it consumes. In addition, the production of compressed air can account for more than 40% of a factory's total electricity bill, and when the air compressor is unloaded, the power consumption is as high as 40% of its installed power.
djust the speed or working condtions warne and gas production.
CMN variable frequency technology enables the CM gas production volume to be adjusted within the range of $40 \%-100 \%$. It will automatically adjust the motor frequency according to the user's gas demand to and control pressure
with an efficiency of up to 97%, we integrate and design all components of the air compressor to ensure that with an efficiency of up to 97%, we integrate and design all components of the air compressor to ensure that the unit can supply compressed air with the lowest specific power at any time, always ensuring the lowest energy consumption

Advantages of using variable frequency models:

1. Reduce the impact of loading and unloading on the intake valve and exhaust valve
2. Reduce the impact of loading and unloading on the internal bearings of the air end
3. Reduce the impact of pressure fluctuations on various pressure-bearing components inside the machine

Description of CMN first-class energy-efficiency air compressor station

For users with special requirements, we provide the design of a first-level energy efficiency station. We use Artificial Intelligence algorithms to back-test the actual air consumption of the factory, and then control the operation plan of the air compressor units based on the data to optimize energy efficiency

The CMN Energy Efficiency Station is based on a digital joint control system for air compressor stations with software and hardware linkage. It uses edge servers, Io cloud boxes, and cloud Al computing platforms to monitor the operating status and operating parameters of each equipment in the station. It also monitors the main pipe pressure in real time to realize functions such as automatic control of adding and subtracting While keeping the station unattended, the energy consumption of the station can be reduced to a minimum. While keeping the station unattended, the energy consumption of the station can be reduced to a minimum.

The full cost of ownership of the air compressor for ten years

Regular model:

- 80% Power consumption
- 10\% Purchase cost

10\% Maintenance
f using a variable frequency model:

- 45% Power consumption

10\% Purchase cost

- 10\% Maintenance
- 35\% Electricity savings

Automatically switch to standby machin to arsure stable air supply Automatic adding and subtracting machine to reduce manual operation Automatically rotate equipment to extend equipment life

Comprehensive monitoring, digital station building Optimize the three-end system of production, transportation and use to create a first-class energy efficiency station

Energy saving

Operation maintenanc

\square

TECHNICAI PARAMETER

Model	Working pressure		FAD		Power		Noise $d B(A)$	Weight Kg	Outline dimension L*W*H mm
	MPa	Psi	$\mathrm{m}^{3} / \mathrm{min}$	cfm	kW	HP			
CM45PVF	0.8	116	3.12-7.80	110-275	45	60	68	1930	$3040 \times 1280 \times 1800$
	1	145	2.45-6.13	87-216				1430	$2200 \times 1350 \times 1530$
	1.25	181	2.26-5.65	80-200					
CM55PVF	0.8	116	3.84-9.60	136-339	55	75	70	2050	$3040 \times 1280 \times 1800$
	1	145	3.44-8.60	121-304				1550	$2200 \times 1350 \times 1530$
	1.25	181	2.97-7.42	105-262					
CM75PVF	0.8	116	5.16-12.90	182-455	75	100	73	2450	$3040 \times 1280 \times 1800$
	1	145	4.57-11.42	161-403				1790	$2200 \times 1350 \times 1530$
	1.25	181	3.93-9.83	139-347					
CM90PVF	0.8	116	6.52-16.30	230-576	90	125	73	3900	$3750 \times 1850 \times 2180$
	1	145	5.81-14.52	205-513				2160	$2500 \times 1400 \times 1580$
	1.25	181	4.92-12.30	174-434					
CM110PVF	0.8	116	7.76-19.40	274-685	110	150	78	4000	$3750 \times 1850 \times 2180$
	1	145	6.76-16.90	239-597				2270	$2500 \times 1400 \times 1580$
	1.25	181	6.04-15.10	213-533					
CM132PVF	0.8	116	8.88-22.21	314-784	132	180	78	4150	$3750 \times 1850 \times 2180$
	1	145	8.15-20.38	288-720				2350	$2500 \times 1400 \times 1580$
	1.25	181	7.31-18.29	258-646					
CM160PVF	0.8	116	11.54-28.85	407-1019	160	220	78	5300	$4300 \times 2000 \times 2500$
	1	145	9.81-24.52	346-866				3720	$3100 \times 1700 \times 2090$
	1.25	181	8.87-22.17	313-783					
CM200PV	0.8	116	14.65-36.63	517-1293	200	270	78	3750	$3100 \times 1700 \times 2090$
	1	145	13.10-32.70	463-1155					
	1.25	181	11.09-27.72	392-979					
CM250PV	0.8	116	17.15-42.88	606-1514	250	340	78	3900	$3100 \times 1700 \times 2090$
	1	145	15.60-39.00	551-1377					
	1.25	181	13.87-34.64	490-1223					
CM320PV	0.8	116	23.64-59.10	835-2087	320	430	80	4850	$3600 \times 2800 \times 2000$
	1	145	21.40-53.50	756-1889					
	1.25	181	19.30-48.25	681-1704					

[^0]
TECHNICAI PARAMITER

Fixed Frequency

Model	Working pressure		FAD		Power		$\begin{gathered} \text { Noise } \\ \hline \mathrm{dB}(\mathrm{~A}) \end{gathered}$	Weight Kg	Outine dimension$\mathrm{L}^{\star} \mathrm{W} \mathrm{W}^{*} \mathrm{H}$mm
	MPa	Psi	$\mathrm{m}^{3} / \mathrm{min}$	cfm	kW	HP			
CM45BF	0.8	116	7.80	275	45	60	68	1930	$3040 \times 1280 \times 1800$
	1	145	6.13	216				1430	$2200 \times 1350 \times 1530$
	1.25	181	5.65	200					
CM55BF	0.8	116	9.60	339	55	75	70	2050	$3040 \times 1280 \times 1800$
	1	145	8.60	304				1550	$2200 \times 1350 \times 1530$
	1.25	181	7.42	262					
CM75BF	0.8	116	12.90	455	75	100	73	2450	$3040 \times 1280 \times 1800$
	1	145	11.42	403				1790	$2200 \times 1350 \times 1530$
	1.25	181	9.83	347					
CM90BF	0.8	116	16.30	576	90	125	73	3870	$3750 \times 1850 \times 2180$
	1	145	14.52	513				2160	$2500 \times 1400 \times 1580$
	1.25	181	12.30	434					
CM110BF	0.8	116	19.40	685	110	150	78	3950	$3750 \times 1850 \times 2180$
	1	145	16.90	597				2270	$2500 \times 1400 \times 1580$
	1.25	181	15.10	533					
CM132BF	0.8	116	22.21	784	132	180	78	4050	$3750 \times 1850 \times 2180$
	1	145	20.38	720				2350	$2500 \times 1400 \times 1580$
	1.25	181	18.29	646					
CM160BF	0.8	116	28.85	1019	160	220	78	5150	$4300 \times 2000 \times 2500$
	1	145	24.52	866				3720	$3100 \times 1700 \times 2090$
	1.25	181	22.17	783					
CM200B	0.8	116	36.63	1293	200	270	78	3750	$3100 \times 1700 \times 2090$
	1	145	32.70	1155					
	1.25	181	27.72	979					
CM250B	0.8	116	42.88	1514	250	340	78	3900	$3100 \times 1700 \times 2090$
	1	145	39.00	1377					
	1.25	181	34.64	1223					
CM320B	0.8	116	59.10	2087	320	430	80	4850	$3600 \times 2800 \times 2000$
	1	145	53.50	1889					
	1.25	181	48.25	1704					

*CM-F indicates air-cooled model, the orange data indicates parameters of air cooled models. Models without F indicate water-cooled models.

GMA techiology maximizes your

 production eficiency while ensuring stability
Single Screw Compression Technology

Thanks to the more ideal single-screw compression structure proposed by B. Zimmern, we are able to provide more perfect medium-pressure compressed air solutions for bottle blowing, container manufacturing and other industries.

Professional certification

Oll content: Class 0	Particles: Class 0	Moisture: Class 0
ISO 9001	ISO 14001	
Quality Management Syst	n Environmental Management System Certification	

When the air end is running, the axial and radial forces acting on the main screw are relatively small, so it can supply compressed air with a maximum pressure of 40bar.

Provide higher pressure: The structural characteristics of the single screw compressor allow it to provide higher pressure compressed air. During the compression process, the meshing of the screw gradually compresses the air, increasing the density of the air. At the same time the axial force and radial force on the screw are very small, thereby achieving higher air outlet pressure.

> Low maintenance costs: Compared to some other types of compressors, single screw compressors have low maintenance costs. Due to its simple structure, the failure rate is relatively low, and the maintenance is relatively easy.

THE FULL COST OF MEDIUM PRESSURE AIR COMPRESSOR OWNERSHIP

CMG adopts advanced design to minimize your expenses in two directions: Energy expenditure
1.Temperature loss

The operating temperature of the air end does not exceed 45 degrees Celsius Isothermal compression is realized to minimize the energy loss.

2.Electricity loss

Adopts high efficiency permanent magnet motor, efficiency reaches 97%.

3.Transmission loss

The air end and motor are directly connected, without belts, speed-increasing gears and other transmission components, to reduce energy loss during transmission.

Maintenance expenditure

WHOLE MACHINE

IS DESIGNED WITH NO WEARING PARTS.

How do we achieve it: The structure of the screw compressor is simpler and more precise. Through the new generation of water lubrication technology, we control the operating temperature of the CMG machine at about 45 degrees. Under this condition the life of each component is extended. Also, common wearing parts such as coupling, star wheel, and minimum pressure valves are designed and customized using special materials.

Daily Maintenance Parts

2

Easy to operate and reduce enterprise staffing costs:
Minimal noise and vibration,
Reduced installation costs:

The compression of screw air compressors relies on high-precision machining and assembly processes and has a tight structure. The completely different compression structure from traditional PET piston machines gives the CM/G series great advantages in terms of noise and vibration. Comparing models with the same gas production volume, CM/G noise is 20% to 50% smaller.

Noise dB(A)
_CM/G——Traditional piston machine

The CM/G series is equipped with a ten-inch touch screen and comes standard with an Internet of Things wireless remote monitoring system. It can also be externally connected to your distributed control system (DCS) through the 485 communication interface for unified management

Absolutely oil-free compressed air improves bottle quality

The CM/G machine does not use any lubricating oil, and the oil content in the air supply is 0 ppm. It is a true oil-free PET air compressor.

1. Ensure bottle quality and gloss, and reduce scrap rate
2. Eliminate the risk of product oil contamination and protect corporate reputation

Worry-free safety, prevent enterprise production accidents

 Water is directly injected into the air end for cooling. The water plays a role in lubricationsealing, and cooling. The temperature of the air end is only about 45 degrees Celsius when machine is running

1. Avoid operator burns and eliminate fire hazards.
2. Reduce the possibility of losses caused by equipment accidents

Stable and reliable, safeguarding enterprise production

Small size, simple and compact structure, the moving parts are only screw and star wheel

1. We understand that no matter how perfect the production management is, the possibility of machine parts failure cannot be completely eliminated, so fewer parts means that the probability of machine problems is greatly reduced.
gas production will drop by no more than 5% within 50,000 hours, and the maintenance and repair cycle is more than five years.
of continuous operation.

Technical Parameter

Model	Working pressure		FAD		Power		Noise $\mathrm{dB}(\mathrm{A})$	Weight Kg	Outline dimension $\mathrm{L}^{*} \mathrm{w}^{*} \mathrm{H}$ mm
	MPa	Psi	$\mathrm{m}^{3} / \mathrm{min}$	cfm	kW	HP			
CM75G	2.0-4.0	290-580	6.3	222	75	100	70	2100	$2750 \times 1250 \times 1480$
CM75GPV	2.0-4.0	290-580	2.5-6.3	88-222	37	50	70	2250	$2000 \times 1900 \times 1480$
					37	50			
CM90G	2.0-4.0	290-580	8.2	290	90	123	72	2580	$3000 \times 1350 \times 1540$
CM110GPV	2.0-4.0	290-580	3.3-8.2	117-290	55	75	72	2450	$2500 \times 2000 \times 1550$
					55	75			
CM110G	2.0-4.0	290-580	10.2	360	110	150	72	2630	$3000 \times 1350 \times 1540$
CM130GPV	2.0-3.0	290-435	5.4-13.5	191-477	55	75	75	3000	$2500 \times 2000 \times 1550$
					75	100			
CM150GPV	2.0-4.0	290-580	5.4-13.5	191-477	75	100	75	3100	
					75	100			$2500 \times 2000 \times 1550$
CM200GPV	2.0-4.0	290-580	7.1-17.8	251-629	90	120	75	3850	$2760 \times 2250 \times 1670$
					110	150			
CM242GPV	2.0-4.0	290-580	9.6-24.0	339-847	110	150	75	3950	$2760 \times 2250 \times 1670$
					132	180			
CM320GPV	2.0-4.0	290-580	12.6-31.5	445-1113	160	220	85	5100	$3800 \times 2100 \times 2250$
					160	220			

V :Represents permanent magnet frequency conversion

而目 CMN

FLOW CHART

Air cooled models $\boldsymbol{\nabla}$

STRATEGIC PARTNER

Innovate Oil-free Technology, Lead the Revolution of Oil-free Air Compressor

[^0]: CM-F indicates air-cooled model, the orange data indicates parameters of air cooled model. Model without F indicates water-cooled

